Computational methods for Lexical Semantic Change Detection

Pierluigi Cassotti, pierluigi.cassotti@gu.se

Hello

Pierluigi Cassotti

Researcher @ Change is Key! Department of Philosophy, Linguistics and Theory of Science University of Gothenburg (Sweden) <u>pierluigi.cassotti@gu.se</u>

Outline

- Computational Modeling Lexical Semantics
 - Synchronic Modeling
 - Diachronic Modeling
- Human annotation of Lexical Semantic Change
- Diachronic Models of Language
 - Static Models and Alignment
 - Contextualized Models
 - Generative Models
- Hands-on

Outline

- Computational Modeling Lexical Semantics
 - Synchronic Modeling
 - Diachronic Modeling
- Human annotation of Lexical Semantic Change
- Diachronic Models of Language
 - Static Models and Alignment
 - Contextualized Models
 - Generative Models
- Hands-on

Models for Lexical Semantic Change Detection

Static Embedding

- Easily to be trained on specific (historical) corpus
- Produce one space for each period, spaces need to be aligned

Contextualized Embeddings

- Trained on large collection of documents
- Not easy to specialize on specific corpus (resources required, catastrophic forgetting)
- Usually use pretrained vectors

Big data - Billions of web pages

Big data - Trillion of web pages

Static Embedding

Collapse word semantics in a single point in the space, in order to compare semantics over time you need different vector spaces over time

Contextualized Embeddings

One vector for each usage of the word. You can then distinguish vectors computed for word usages coming from specific period

Static Embedding

Time 1 Time 2

Contextualized Embedding

All at once

If the sun's rays be parallel to any plane, that plane to which they are 1836 parallel, is called a plane of shade. its angles upon a given point A, in the plane, on which the ichnography 1836 is to be described: will be no difference between the shadow on the plane, and the side of 1836 the prism which projects that shadow; There are other kinds of planes besides the above; as the plough, for 1853 sinking a groove to receive a projecting tongue; 2003 Troy turned it to the right, and the plane turned to the right, just They had been making good progress, in spite of their greenness; next day Mr. Fulton was planning to stretch the silk over the planes; 1999 In the meantime, most of the troops and 25% of the supplies flying to Saudi Arabia are traveling on wide- body planes leased from 1990 commercial airlines. Reduction is only needed in patients near skeletal maturity whose fracture has more than 50-70 degrees of angulation in either the 2006 sagittal or coronal plane (Rab &; Grottkau, 2001).

Static Embedding

Time 2

Time 1

If the sun's rays be parallel to any plane, that plane to which they are 1836 parallel, is called a plane of shade. its angles upon a given point A, in the plane, on which the ichnography 1836 is to be described: will be no difference between the shadow on the plane, and the side of 1836 the prism which projects that shadow; There are other kinds of planes besides the above; as the plough, for 1853 sinking a groove to receive a projecting tongue; Troy turned it to the right, and the plane turned to the right, just 2003 They had been making good progress, in spite of their greenness; next 1999 day Mr. Fulton was planning to stretch the silk over the planes; In the meantime, most of the troops and 25% of the supplies flying to Saudi Arabia are traveling on wide- body planes leased from commercial airlines. 1990 Reduction is only needed in patients near skeletal maturity whose fracture has more than 50-70 degrees of angulation in either the

2006 sagittal or coronal plane (Rab &; Grottkau, 2001).

Static Embedding

1836	If the sun's rays be parallel to any plane, that plane to which they are parallel, is called a plane of shade.	
1836	its angles upon a given point A, in the plane, on which the ichnography is to be described;	
1836	will be no difference between the shadow on the plane, and the side of the prism which projects that shadow;	
1853	There are other kinds of planes besides the above; as the plough, for sinking a groove to receive a projecting tongue;	
		_
		1
2003	Troy turned it to the right, and the plane turned to the right, just	
2003 1999	Troy turned it to the right, and the plane turned to the right, just They had been making good progress, in spite of their greenness; next day Mr. Fulton was planning to stretch the silk over the planes;	
2003 1999 1990	Troy turned it to the right, and the plane turned to the right, just They had been making good progress, in spite of their greenness; next day Mr. Fulton was planning to stretch the silk over the planes; In the meantime, most of the troops and 25% of the supplies flying to Saudi Arabia are traveling on wide- body planes leased from commercial airlines.	

If the sun's rays be parallel to any plane, that plane to which they are parallel, is called a plane of shade.

its angles upon a given point A, in the plane, on which the ichnography is to be described;

will be no difference between the shadow on the plane, and the side of the prism which projects that shadow;

There are other kinds of planes besides the above; as the plough, for 3 sinking a groove to receive a projecting tongue;

2003 Troy turned it to the right, and the plane turned to the right, just
They had been making good progress, in spite of their greenness; next
1999 day Mr. Fulton was planning to stretch the silk over the planes;
In the meantime, most of the troops and 25% of the supplies flying to
Saudi Arabia are traveling on wide- body planes leased from
1990 commercial airlines.

Reduction is only needed in patients near skeletal maturity whose fracture has more than 50-70 degrees of angulation in either the sagittal or coronal plane (Rab &; Grottkau, 2001).

If the sun's rays be parallel to any plane, that plane to which they are 1836 parallel, is called a plane of shade.

its angles upon a given point A, in the plane, on which the ichnography is to be described;

will be no difference between the shadow on the plane, and the side of the prism which projects that shadow;

There are other kinds of planes besides the above; as the plough, for sinking a groove to receive a projecting tongue;

Troy turned it to the right, and the plane turned to the right, just
They had been making good progress, in spite of their greenness; next
day Mr. Fulton was planning to stretch the silk over the planes;
In the meantime, most of the troops and 25% of the supplies flying to

Saudi Arabia are traveling on wide- body planes leased from commercial airlines.

Reduction is only needed in patients near skeletal maturity whose fracture has more than 50-70 degrees of angulation in either the sagittal or coronal plane (Rab &; Grottkau, 2001).

2006

Static Embedding

1836	If the sun's rays be parallel to any plane, that plane to which they are parallel, is called a plane of shade.	
1836	its angles upon a given point A, in the plane, on which the ichnography is to be described;	
1836	will be no difference between the shadow on the plane, and the side of the prism which projects that shadow;	
1853	There are other kinds of planes besides the above; as the plough, for sinking a groove to receive a projecting tongue;	
		_
		1
2003	Troy turned it to the right, and the plane turned to the right, just	
2003 1999	Troy turned it to the right, and the plane turned to the right, just They had been making good progress, in spite of their greenness; next day Mr. Fulton was planning to stretch the silk over the planes;	
2003 1999 1990	Troy turned it to the right, and the plane turned to the right, just They had been making good progress, in spite of their greenness; next day Mr. Fulton was planning to stretch the silk over the planes; In the meantime, most of the troops and 25% of the supplies flying to Saudi Arabia are traveling on wide- body planes leased from commercial airlines.	

Comparing vector spaces

Lexical Semantic Change Models

P. Cassotti, P. Basile, M. de Gemmis, and G. Semeraro, "Analyzing Gaussian distribution of semantic shifts in Lexical Semantic Change Models," IJCoL Ital. J. Comput. Linguist., vol. 6, no. 6–2, pp. 23–36, 2020.

Alignment Models

Alignment approach

Post-alignment

• Post-alignment models first train static word embeddings for each time slice and then align them

Jointly alignment

• Jointly Alignment models train word embeddings and jointly align vectors across all time slices

• Jointly Alignment models can be distinguished in Explicit alignment models and Implicit alignment models.

Alignment approach

Post-alignment

• Post-alignment models first train static word embeddings for each time slice and then align them

Jointly alignment

• Jointly Alignment models train word embeddings and jointly align vectors across all time slices

• Jointly Alignment models can be distinguished in Explicit alignment models and Implicit alignment models.

Post-alignment and Explicit alignment rely on the assumption that only few words change their meaning

Orthogonal Procrustes (OP)

Procrustes analysis is a form of <u>statistical shape analysis</u> used to analyse the distribution of a set of <u>shapes</u>. The name <u>Procrustes</u> (<u>Greek</u>: Προκρούστης) refers to a bandit from Greek mythology who made his victims fit his bed either by stretching their limbs or cutting them off

Orthogonal Procrustes (OP)

Orthogonal Procrustes (OP)

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. <u>Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change</u>. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1489–1501, Berlin, Germany. Association for Computational Linguistics.

Outline

- Computational Modeling Lexical Semantics
 - Synchronic Modeling
 - Diachronic Modeling
- Human annotation of Lexical Semantic Change
- Diachronic Models of Language
 - Static Models and Alignment
 - Contextualized Models
 - Generative Models
- Hands-on

Contextualized Models

TempoBERT

- Use time as additional context
- Exploit time masking

Y_{EAR} : 1800 \longrightarrow "<1800> The mountains have an awful majesty."	Time prediction:	"[MASK] Today's weather is awful." \longrightarrow <2020>
$ \underbrace{ \qquad \qquad }_{YEAR: \ 2020 \rightarrow \ "<2020> \ You \ look \ awful \ today."} $	Time-dependent MLM:	"<1800> He has an awful [MASK]." —→ presence "<2020> He has an awful [MASK]." —→ temper
(a) TempoBERT is trained on temporal corpora, where each sequence is prepended with temporal context information.	(b) TempoBERT can b prediction;	be used for inference in two modes: (1) time (2) time-dependent mask filling.

Figure 1: Example of TempoBERT's time masking for training and inference. The word 'awful' changed its meaning in the last two centuries from marvelous to disgusting.

Rosin, Guy D., Ido Guy, and Kira Radinsky. "Time masking for temporal language models." *Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining*. 2022.

Temporal Attention

• Extends self-attention to include time dimension

$$TemporalAttention(Q, K, V, T) =$$
softmax $\left(\frac{Q \frac{T^{\mathsf{T}}T}{\|T\|} K^{\mathsf{T}}}{\sqrt{d_k}}\right) V$

Time-specific weight matrix

Guy D. Rosin and Kira Radinsky. 2022. <u>Temporal Attention for Language Models</u>. In *Findings of the Association for Computational Linguistics: NAACL 2022*, pages 1498–1508, Seattle, United States. Association for Computational Linguistics.

XLM-RoBERTa

Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

Sebastian Ruder, Anders Søgaard, and Ivan Vulić. 2019. <u>Unsupervised Cross-Lingual Representation Learning</u>. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts*, pages 31–38, Florence, Italy. Association for Computational Linguistics.

Gloss Reader

- Rely on XLM-RoBERTa and trained on a English Word Sense Disambiguation (WSD) dataset (SemCor)
- Zero-shot ability on other languages such as Russian

The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

Context Encoder

bank ¹	Gloss:	a financial institution that accepts deposits and channels the money into lending activities
bank ²	Gloss	sloping land (especially the slope beside a body of water)

Gloss Encoder

Rachinskiy, Maxim, and Nikolay Arefyev. "Zeroshot Crosslingual Transfer of a Gloss Language Model for Semantic Change Detection." *Computational linguistics* and *intellectual technologies: Papers from the annual conference Dialogue*. 2021.

Deep Mistake

- Pretrained XLM-R fintuned on MCL-WiC task
- Not depends on fixed sense inventories

Lang	Target	Context-1	Context-2	Label
EN	Beat	We beat the competition	Agassi beat Becker in the tennis championship.	True
DA	Tro	Jeg <u>tror</u> p [°] a det, min mor fortalte.	Maria <u>troede</u> ikke sine egne øjne.	True
ET	Ruum	Uhel hetkel olin v aljaspool aega ja <u>ruumi</u> .	Umberringi oli l oputu t uhi <u>ruum</u> .	True
FR	Causticité	Sa <u>causticité</u> lui a fait bien des ennemis.	La <u>causticité</u> des acides.	False
КО	틀림	<u>틀림이</u> 있는지 없는지 세어 보시오.	그 아이 하는 짓에 <u>틀림이</u> 있다면 모두 이 어미 죄이지요.	False
ZH	發	建築師希望發大火燒掉城市的三分之一。	如果南美洲氣壓偏低,則印度可能發乾旱	True
FA	صرف	<u>صرف</u> غذا نیم ساعت طول کشید	معلم <u>صرف</u> افعال ماضی عربی <i>ر</i> ا آموزش داد	False

Arefyev, Nikolay, et al. "DeepMistake: Which Senses are Hard to Distinguish for a WordinContext Model." *Computational linguistics and intellectual technologies: Papers from the annual conference Dialogue*. 2021.

Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis, Giovanni Semeraro, and Pierpaolo Basile. 2023. <u>XL-LEXEME: WiC Pretrained Model for Cross-Lingual</u> <u>LEXical sEMantic changE</u>. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 1577–1585, Toronto, Canada. Association for Computational Linguistics.

<u>Dataset</u>	Languages
WiC	Monolingual
Pilehvar et al., (2019	EN
XL-WiC	Multilingual
(Raganato et al., 2020)	EN, BG, ZH, HR, DA, NL, ET, FA, FR, DE, IT, JA, KO
MCL-WiC	Multilingual
(Martelli et al., 2021)	EN, AR, FR, RU, ZH
	Crosslingual
	AR, FR, RU, ZH
AM ² ICO	Crosslingual
(Liu et al., 2021)	EN, DE, RU, JA, KO, ZH,AR, IN, FI, TR, EU, KA, UR, BN, KK

Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis, Giovanni Semeraro, and Pierpaolo Basile. 2023. <u>XL-LEXEME: WiC Pretrained Model for Cross-Lingual</u> <u>LEXical sEMantic changE</u>. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 1577–1585, Toronto, Canada. Association for Computational Linguistics.

			EN	LA	DE	SV	ES		RU		N	0	ZH	Avgw
			$C_1 - C_2$	$C_2 - C_3$	$C_1 - C_3$	$C_1 - C_2$	$C_2 - C_3$	$C_1 - C_2$	$C_i - C_j$					
		BERT	.563	-	.271	.270	.335	.518	.482	.416	.441	.466	.656	.449
		mBERT	.363	.102	.398	.389	.341	.368	.345	.386	.279	.488	.689	.371
	APD	XLM-R	.444	.151	.264	.257	.386	.290	.287	.318	.195	.379	.500	.316
-	ALD	XL-LEXEME	.886*	.231	.839*	.812*	.665*	.796*	.820*	.863*	.659	.640*	.731*	.751*
ase		SOTA: sup.	.757	056	.877	.754	n.a.	.799	.833	.842	.757	.757	n.a.	
-P		SOTA: uns.	.706	.443	.731	.602	n.a.	.372	.480	.457	.389	.387	n.a.	
LI		BERT	.457	-	.422	.158	.413	.400	.374	.347	.507	.444	.712	.406
fo		mBERT	.270	.380	.436	.193	.543	.391	.356	.423	.219	.438	.524	.395
	DDT	XLM-R	.411	.424	.369	.020	.505	.321	.443	.405	.387	.149	.558	.381
	PKI	XL-LEXEME	.676	.506*	.824	.696	.632	.704	.750	.727	.764*	.519	.699	.693
		SOTA: sup.	.531	n.a.										
		SOTA: uns.	.467	.561	.755	.392	n.a.	.294	313	313	.378	.270	n.a.	
		BERT	.289	-	.469	090	.225	.069	.279	.094	.314	.011	.165	.179
		mBERT	.181	.277	.280	.023	.067	.017	.086	116	.035	090	.465	.077
	ADIISD	XLM-R	.278	.398	.224	076	.224	068	.209	.130	100	.030	.448	.142
P	ALTIOD	XL-LEXEME	.493	.033	.499	.118	.392	.106	.053	.117	.297	.381	.308	.223
ase		SOTA: sup.	n.a.											
-P		SOTA: uns.	.436	.481	.583	.343	n.a.							
nse		BERT	.385	-	.355	.106	.383	.135	.102	.243	.233	.087	.533	.239
Se		mBERT	.323	039	.312	.195	.343	068	.160	.142	.241	.290	.338	.181
	WDD	XLM-R	.564	064	.499	.129	.459	.268	.216	.342	.226	.349	.382	.314
	WIDID	XL-LEXEME	.652	.236	.677	.475	.522	.178	.354	.364	.561	.457	.563	.422
		SOTA: sup.	n.a.											
		SOTA: uns.	.651	096	.527	.499	.544	.273	.393	.407	n.a.	n.a.	n.a.	

Periti, F., & Tahmasebi, N. (2024). A Systematic Comparison of Contextualized Word Embeddings for Lexical Semantic Change.

		EN	DE	SV	ES		RU		N	0	ZH	Avgw
	20 20	$C_1 - C_2$	$C_2 - C_3$	$C_1 - C_3$	$C_1 - C_2$	$C_2 - C_3$	$C_1 - C_2$	$C_i - C_j$				
	BERT	.503	.350	.221	.319	.314	.344	.350	.429	.406	.516	.358
(1)	mBERT	.332	.344	.284	.289	.280	.273	.293	.283	.333	.413	.301
VIC	XLM-R	.352	.289	.255	.288	.212	.250	.251	.317	.261	.392	.272
-	XL-LEXEME	.626	.628	.631	.547	.549	.558	.564	.484	.521	.630	.568
	GPT-4.0	.606		-	-	-	-	-	-	-	-	-
	Agreement	.633	.666	.672	.531	.531	.567	.564	.761	.667	.602	.593
	BERT	.136 / .700	.047 / .662	.023 / .596	.189/.695	- / -	- / -	- / -	.251/.771	.247 / .758	.279 / .759	.166 / .702
IS	mBERT	.067 / .644	.054 / .679	.024 / .648	.228 / .700	-/-	- / -	- / -	.241 / .759	.159/.753	.172 / .713	.146 / .696
M	XLM-R	.068 / .737	.024 / .725	.031 / .680	.164 / .755	-/-	-/-	- / -	.179 / .775	.183 / .715	.279 / .806	.133 / .743
	XL-LEXEME	.273 / .834	.300 / .788	.249 / .766	.400 / .820	- / -	- / -	- / -	.337 / .806	.304 / .808	.448 / .836	.339 / .810
	GPT-4.0	.340 / .877	-/-	- / -	- / -	- / -	- / -	- / -	-/-	-/-	- / -	- / -
0.00	BERT	.425	.116	.148	.284	.487	.452	.469	.571	.521	.808	.422
8	mBERT	.120	.205	.234	.394	.372	.325	.408	.290	.454	.737	.357
G	XLM-R	.219	.069	.143	.464	.284	.301	.375	.395	.345	.557	.324
	XL-LEXEME	.801	.799	.721	.655	.780	.824	.851	.620	.567	.716	.754
	GPT-4.0	.818	-	-	-	-	-	-	-	-	-	-

Periti, F., & Tahmasebi, N. (2024). A Systematic Comparison of Contextualized Word Embeddings for Lexical Semantic Change.

Outline

- Computational Modeling Lexical Semantics
 - Synchronic Modeling
 - Diachronic Modeling
- Human annotation of Lexical Semantic Change
- Diachronic Models of Language
 - Static Models and Alignment
 - Contextualized Models
 - Generative Models
- Hands-on
Generative Models

		WordNet			Oxford			
Model	Test	BLEU	ROUGE-L	BERT-F1	BLEU	ROUGE-L	BERT-F1	
Huang et al. (2021)	Unknown	32.72	2	2	26.52	120		
Flan-T5 XL	Zero-shot (task shift)	2.70	12.72	86.72	2.88	16.20	86.52	
Flan-T5 XL	In-distribution	11.49	28.96	88.90	16.61	36.27	89.40	
Flan-T5 XL	Hard domain shift	29.55	48.17	91.39	8.37	25.06	87.56	
Flan-T5 XL	Soft domain shift	32.81	52.21	92.16	18.69	38.72	89.75	

Table 3: Results of the definition generation experiments.

Usage example	Target word	Generated definition
'about half of the soldiers in our rifle platoons were draftees whom we had trained for about six weeks'	draftee	'A PERSON WHO IS BEING ENLISTED IN THE ARMED FORCES'

Table 1: An example of a definition generated by our fine-tuned Flan-T5 XL. The model is prompted with the usage example, post-fixed with the phrase 'What is the definition of draftee?'

Method	Cosine	SacreBLEU	METEOR
Token embeddings	0.141	-	
Sentence embeddings	-	-	
Gen	erated def	initions	
Flan-T5 XL Zero-shot	0.188	0.041	0.083
Flan-T5 XXL Zero-shot	0.206	0.045	0.092
Flan-T5 base FT	0.221	0.078	0.077
Flan-T5 XL FT	0.264	0.108	0.117

Table 4: Correlations with pairwise similarity judgements by humans. 'FT' stands for 'fine-tuned model'.

Substitution-based

	GEMS	SE Eng	SE Ger	SE Lat	SE Swe	Average	Average (weighted)
Number of words	96*	37	40	48	31		
Static Embedding Methods							
Pömsl and Lyapin (2020)		0.422	0.725	0.412	0.547		-
Montariol et al. (2021) [static]	0.347	0.321	0.712	0.372	0.631	0.477	0.452
Contextual Embedding Methods							
Martinc et al. (2020b)	0.510	0.313	0.436	0.467	-0.026	0.340	0.394
Montariol et al. (2021) [contextual]	0.352	0.437	0.561	0.488	0.321	0.432	0.422
Scaled JSD	0.535	0.547	0.563	0.533	0.310	0.498	0.514

Dallas Card. 2023. <u>Substitution-based Semantic Change Detection using Contextual Embeddings</u>. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 590–602, Toronto, Canada. Association for Computational Linguistics.

Substitution-based

Word	SE	SE	Scaled	Scaled	Corpus A substitutes (1810–1860)	Corpus B substitutes (1960-2010)
	rating	rank	JSD	JSD rank		
plane	0.88	1	0.97	1	plane line planes point surface lines	plane aircraft planes jet airplane car
graft	0.55	4	0.97	2	tree plant stock vine fruit wood	corruption bribery fraud crime violence
tip	0.68	2	0.85	7	tipped tip covered end filled tips give	tip tips end tipped edge point top ends
gas	0.16	23	0.72	14	gas gases vapor air fire water	gas gasoline oil gases fuel water air
head	0.30	10	0.68	16	head face hand heads hands eyes	head face heads hand body hands eyes
bit	0.31	9	0.51	23	bit piece sort little pieces bits kind	bit little lot touch tad piece bits pieces
fiction	0.02	35	0.41	27	fiction history literature art poetry	fiction fact fantasy story stories novels
tree	0.07	33	0.22	33	trees tree plants branches plant wood	trees tree plants woods branches bushes
ounce	0.28	11	0.08	37	ounce inch pounds hour acre dollars	ounce pounds inch inches cups pieces

Dallas Card. 2023. <u>Substitution-based Semantic Change Detection using Contextual Embeddings</u>. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 590–602, Toronto, Canada. Association for Computational Linguistics.

Substitution-based

	T1	Τ2	
	remember that it be only such line as	as his plane cross north carolina and	
	be nearer the ground plane than the eye	head south over the atlantic it pick up	
	that be draw under the horizon line	a small convoy of escort military craft	
		that try to make radio contact but fail	
BERT	there, be, where, here, and	planes, over, out, boats, aircraft	
XLM-R	line, rather, and, more, level	planes, crew, men, vehicles, team	
LLaMa 2	level, surface, flat plane, horizontal plane	aircraft,airplane,jet,plane	
		model, propeller-driven vehicle	

Table 6: Generated substitutions for usages of plane extracted by SemEval 2020 Task 1 English.

Francesco Periti, Pierluigi Cassotti, Haim Dubossarsky, Nina Tahmasebi. 2024. Analyzing Semantic Change through Lexical Replacements. ACL 2024

Beyond Binary Lexical Semantic Change Detection

Using Synchronic Definitions and Semantic Relations to Classify Semantic Change Types

Pierluigi Cassotti¹, Stefano De Pascale², Nina Tahmasebi¹ ¹University of Gothenburg ²VUB/FWO/KU Leuven

Horticulture

graft Medicine

Corruption

Horticulture

graft Medicine

Corruption

Word	Old Meaning	New meaning	Cause	Туре
*adripare:vlt	am Ufer ankommen	ankommen	prototype / frame	generalization
necare:lt	töten	ertränken	socio-cultural change	specialization
*ratta	Ratte	Maus	referential vagueness	co-hyponymous transfer
1.	1	0.14	4 - 1	
sacer:lt	heilig, geheiligt	verflucht	taboo	auto-antonymy

Definitions manually curated by an Historical Linguist aided by ChatGPT

- We translate Blank's glosses into English using Google Translate's API
- Following this, we prompt ChatGPT API, providing some examples we initially set up to generate definitions that are more akin to those found in a dictionary.
- Finally, a linguist with expertise in historical linguistics and semantics manually reviewed and refined the collection of generated translations and definitions, replacing or modifying them as necessary.

ChatGPT Prompting

Words	Old Meaning	New Meaning	Cause	Association Model	Notes	Туре	Old Meaning (EN)	New Meaning (EN)	Old Meaning (EN Definition)	New Meaning (EN Definition)
afferrare:it	ergreifen	verstehen	abstraktes Konzept	SimiDES	KörperGeist	Metaphor	grab	understand	to quickly take…	to understand
affreusemen t:fr	scheußlich	sehr, stark (Adv.)	Expressivität	SimiDES	Intensität	Metaphor	awful	very, strong (adv.)	extremely bad	very much or in a…
agenda:sp	Notizbuch	NotebookCo mputer	neues Konzept	SimiDES	Gegenstand Gegenstand	Metaphor	Notebook	Notebook computer	a book of paper for…	a small, light computer
águila:sp	Adler	schlauer Mensch, Fuchs	Expressivität	SimiDES	TierMensch	Metaphor	Adler	Clever person, fox	a large, strong bird…	having or showing
aile:fr; ala:it,sp,pt	Flügel	Flügel eines Gebäudes	neues Konzept	SimiDES	Tier Gegenstand	Metaphor	wing	Wing of a building	the flat part of the	a part of a large…

Generate Old Meaning (EN Definition) and New Meaning (EN Definition) for the following entries, providing descriptive, dictionary-like definitions as in the examples above.

Word	Old Meaning	New meaning	Cause	Туре
*adripare:vlt	am Ufer ankommen	ankommen	prototype / frame	generalization
necare:lt	töten	ertränken	socio-cultural change	specialization
*ratta	Ratte	Maus	referential vagueness	co-hyponymous transfer
1.	1	0.14	4 - 1	
sacer:lt	heilig, geheiligt	verflucht	taboo	auto-antonymy

Blank's Taxonomy + Definitions = Lexical Semantic Change Cause-Type-Definitions Benchmark

Word	Old Meaning	New meaning	Cause	Туре
*adripare:vlt	am Ufer ankommen	ankommen	prototype / frame	generalization
	"arrive at the bank/shore"	"arrive"		
	'arrive at the bank of a river or	'to reach a place, especially at the		
	the shore of a lake or sea'	end of a journey'		
necare:lt	töten	ertränken	socio-cultural change	specialization
	"kill"	"drown"		
	'to cause the death of a living	'to cause to die by submersion in		
	thing, typically involving an act	liquid, especially by forcing the		
	of violence or an intention to	head under the water.'		
	harm.'			
*ratta	Ratte	Maus	referential vagueness	co-hyponymous transfer
	"rat"	"mouse"		
	'a small rodent, larger than a	'a small mammal with short fur,		
	mouse, that has a long tail and	a pointed face, and a long tail'		
	is considered to be harmful'			
sacer:lt	heilig, geheiligt	verflucht	taboo	auto-antonymy
	"sacred"	"cursed"		
	'considered to be holy and de-	'experiencing bad luck caused by		
	serving respect, especially be-	a magic curse'		
	cause of a connection with a god'			

WordNet

- Antonymy: Opposite meanings, e.g. *hot* and *cold*
- **Hyponymy**: Sense more specific instance of a general category, e.g. *sparrow* is a hyponym of *bird*
- **Hypernymy**: A sense that is a general category of more specific instances, e.g. *bird* is a hypernym of *sparrow*
- **Co-hyponyms:** Senses that share the same hypernym, e.g. *cat* and *dog* are hyponym of "animal"

WordNet

- Antonymy: Opposite meanings, e.g. *hot* and *cold*
- **Hyponymy**: Sense more specific instance of a general category, e.g. *sparrow* is a hyponym of *bird*
- **Hypernymy**: A sense that is a general category of more specific instances, e.g. *bird* is a hypernym of *sparrow*
- **Co-hyponyms:** Senses that share the same hypernym, e.g. *cat* and *dog* are hyponym of "animal"
- Homonymy: We random sample pairs of senses to emulate homonymy

WordNet Test set (Synchronic)

WordNet Test set (Synchronic)

LSC-CTD Benchmark (Diachronic)

Model	Correlation
Definitions + SacreBLEU	0.108
Definitions + METEOR	0.117
Definitions + Cosine similarity	0.264
Definitions + Homonym	0.472
XL-LEXEME	0.623
Definitions + Homonym + XL-LEXEME	0.646

Table 3: Spearman correlation of human judgments vs model predictions, Definitions generated using the method of Giulianelli et al. (2023)

Model	Correlation
Definitions + SacreBLEU	0.108
Definitions + METEOR	0.117
Definitions + Cosine similarity	0.264
Definitions + Homonym	0.472
XL-LEXEME	0.623
Definitions + Homonym + XL-LEXEME	0.646

Table 3: Spearman correlation of human judgments vs model predictions, Definitions generated using the method of Giulianelli et al. (2023)

$$\rho(u_1, u_2) = \begin{cases} \cos(u_1, u_2), & \text{if } u_1, u_2 \text{ Related.} \\ 0, & \text{otherwise.} \end{cases}$$

Model	Correlation
Definitions + SacreBLEU	0.108
Definitions + METEOR	0.117
Definitions + Cosine similarity	0.264
Definitions + Homonym	0.472
XL-LEXEME	0.623
Definitions + Homonym + XL-LEXEME	0.646

Table 3: Spearman correlation of human judgments vs model predictions, Definitions generated using the method of Giulianelli et al. (2023)

Model	Accuracy
Definitions + Homonym	0.783
XL-LEXEME + 0.5 threshold	0.761
XL-LEXEME + Opt. threshold	0.848

Table 4: Binary task SemEval-2020 Task 1 (EN)

Conclusion

In this work, we have showed that:

- *definitions* of word senses can be used to detect *semantic change type*;
- we can *classify the type of semantic change* by training on synchronic sense relationships using sense definitions; and that
- type information can *improve* models for both graded
 Word-In-Context (WiC) as well as *semantic change detection*.

Links

hf.co/ChangeIsKey/change-type-classifier

github.com/ChangeIsKey/change-type-classification

zenodo.org/records/11471318

pierluigi.cassotti@gu.se

Analyzing Semantic Change through Lexical Replacements. (Periti et al., ACL 2024)

1 University of Milan, Italy 2 University of Gothenburg, Sweden

3 Queen Mary University of London, England

Introduction Contextualization

The advancement of LLMs: Contextualization

When words are used in contexts similar to those encountered *during training*, LLMs can easily differentiate, in a computational way, between word meanings.

Sitting on a **rock**

Listening to **rock**

Introduction Language is always changing

E.g., gay has changed its meaning from *happy* to *homosexual*

Can LLMs contextualize word meanings that have not been encountered during training?

The heart is sportive, light, and **happy**, life seems a long glad summer's day gay homosexual ← happy

Lexical Replacement Words replaced by other words over time.

E.g., happy has replaced the word gay in some of his contexts

The heart is sportive, light, and **gay**, life seems a long glad summer's day

1854, found via https://discovery.nationalarchives.gov.uk

The replacement schema Self-embedding distance

synonyms (e.g. *sadness* ← *unhappiness*)

- Expectation: similar embeddings
- Emulation: the absence of any semantic change

antonyms (e.g. *hot* ← *cold*)

- Expectation: slightly less similar embeddings
- Emulation: a *contronym* change

hypernyms (e.g. animal ← bird)

- Expectation: slightly less similar embeddings
- Emulation: a *broadening* change

random (e.g. *sadness* \leftarrow *eld*)

- Expectation: very dissimilar embeddings
- Emulation: strong (i.e., the emergence of a homonymic sense)

The replacement schema Self-embedding distance

Modeling Semantic Change Graded Change Detection

Graded Change Detection consists in ranking a set of targets word according to their degree of semantic change between two time periods. E.g., A noisy *fly* sat on my shoulder

Modeling Semantic Change A novel approach based on *lexical replacements*

Modeling Semantic Change A novel approach based on *lexical replacements*

Lexical replacements

	Model	Spearman Correlation
	Rosin and Radinsky	0.629
	Kutuzov and Giulianelli	0.605
	Laicher et al.	0.571
	Periti et al.	0.512
	Cassotti et al. (XL-LEXEME)	0.757
Synonym Replacement	Replacement Min. Corr.	0.600
	Replacement Max. Corr.	0.741
	Replacement Avg. Corr.	0.674
Random Replacement	Replacement Min. Corr.	0.495
	Replacement Max. Corr.	0.622
	Replacement Avg. Corr.	0.542

$$sc_w = \frac{1}{k} \sum_{r \in R(\rho(w_i))_k} TD(w_i, r)$$

Modeling Semantic Change

lexical replacements vs. *lexical substitutes*

Lexical replacements

Lexical substitutes

	Model	Spearman Correlation
	Rosin and Radinsky	0.629
	Kutuzov and Giulianelli	0.605
	Laicher et al.	0.571
	Periti et al.	0.512
	Cassotti et al. (XL-LEXEME)	0.757
Synonym Replacement	Replacement Min. Corr.	0.600
	Replacement Max. Corr.	0.741
	Replacement Avg. Corr.	0.674
Random Replacement	Replacement Min. Corr.	0.495
	Replacement Max. Corr.	0.622
	Replacement Avg. Corr.	0.542

Model	Spearman Correlation
Arefyev and Zhikov (2020)	0.299
Card (2023)	0.547
LLaMa 2 7B	0.731
BERT	0.450

Conclusion

In our work...

- We analyzed semantic change though lexical replacements
- We proposed a new *interpretable* method to model semantic change
- We compared the use of *lexical replacements* and *lexical substitutes*

Takeaways

- BERT, mBERT, and XLM-R struggle to contextualize word meanings that they did not encounter during training
- Semantic change can be modeled as contextualization noise
- Our method obtain state-of-the-art results while being interpretable

Outline

- Computational Modeling Lexical Semantics
 - Synchronic Modeling
 - Diachronic Modeling
- Human annotation of Lexical Semantic Change
- Diachronic Models of Language
 - Static Models and Alignment
 - Contextualized Models
 - Generative Models

• Hands-on

Thank for your attention!

Change Is Key!

https://www.changeiskey.org/

pierluigi.cassotti@gu.se